le

ALUMINUM ALLOYS AND HG TUBING

1. Aluminum and aluminum alloys
2. Typical aluminum tubes for HG
3. Maximun bending moment
4. Aluminum tubing sizes

1. Aluminum and aluminum alloys


Tubes of typical hang gliders are made of aluminum alloys 6061-T6 and 7075-T6 (zicral) alloy types.

Aluminum alloys http://en.wikipedia.org/wiki/Aluminium_alloy
Aluminum 7075-T6 http://en.wikipedia.org/wiki/7075_aluminium_alloy
Aluminum 6061-T6 http://en.wikipedia.org/wiki/6061_aluminium_alloy

Aluminum 7075-T6
is also known for trade marks Perunal, Zicral, Ergal, Fortal Constructal.

Mechanical properties of tubes used in HG:

Name-source
Code
Ultimate strenght (2)
Yield strenght (3)
Elongation

Density
Modulus of
elasticity


kp/mm2
Mpa   
Mpa

g/cm3
MPa
Perunal (1)
7075-T6
53-64



2,81

Avional 100 (1)
2017A
38-55





Anticorodal (1)
6081-T6
32-36





Extradural (1)
6061-T6
25-28 k













Wiki
7075-0

276
145
9-10%


Wiki 7075-T6

510-538
434-476
5-8%


Wiki 7075-T651

462-538
372-462
3-9%


Wiki
6061-0

125
55
25-30%
2,70

Wiki 6061-T6

290
241
10%
2,70









Mathweb
7075-T6

524
462
11%
2,81
71,7
Mathweb
6061-T6

310
276
12%
2,70
68,9
Aluminum (pure)
Al


7-11

2,70
70
Table 1: Mechanical properties of HG aluminum alloy tubing.

(1) Data from Finsterwalder tubing

(2) The maximum stress a material can withstand when subjected to tension, compression or shearing. It is the maximum stress on the stress-strain curve. Note: 1kp/mm2 is aprox 10 MPa.
(3) Below the yield strength all deformation is recoverable, and the material will return to its initial shape when the load is removed. This recoverable deformation is known as elastic deformation. For stresses above the yield point the deformation is not recoverable, and the material will not return to its initial shape.

Note also that the mechanical properties of 7075 depends geratly on the temper of the materials (ultimate strenght varies from 276 to 530 Mpa in temper "0" and temper "T6".

Another important detail is that the aluminum alloy 7075 has higher density (2.81 g/cm3) that the pure aluminum (2.70 g/cm3) and other alloys, due to the alloy with zinc, manganese and copper). However, their ultimate strenght, allows small tube thickness and therefore lighter than tubes of other alloys.


2. Typical aluminum tubes for HG


Typical diameters:

Crossbar: 60 mm
Leading edge: 52 to 48 mm (tubing 0,9 mm thickness)
Keel: 45 mm
Battens: 9 mm (3/8 x 0.035)
Triangle and king post: 25 mm x 1.6 mm thickness

Early standard hang gliders  had fewer tubing diameters.

LE SPS tubes

1-5/8" x 0,058    (41,28 x 1,47)   LE/Keel
1-1/2" x 0.058   (38,1 x 1,47)    LE/Keel
1" x 0,065   (25,4 x 1,65)    Antenna
3/4" x 0,065   (19,05 x 1,65)    Triangle

WW Falcon 3 tubes

Leading edge: 50x0.9 and 52x0.9 mm
Keel: 42x0.9 mm
Crossbar: 62x0.9 mm and 60x0.9 mm

WW Harrier (1981)

Leading edges 2" x 0.049 and 1.75" x 0.049
Keel 1.75" x 0.058
Xbar   1.75" x 0.049 + inner sleeve 1.625" x 0.035
Control bar leg 1.125" x 0.058 + inner sleeve 1.035"
Control bar base 1.125" x0.058

WW Raven (1979)

Leading edge 1.75" x 0.049 (44.45 x 1.24)
Keel 1.5" x 0.049 (38.1 x 1.24)
Xbar 1.75" x 0.049 (44.45 x 1.24)
Control bar 1.125"

La Mouette Sphinx
(...)

La Mouette Atlas
         
(Please send me data)

Seedwings Sensor 1 (1975)

Aluminum 6061-T6 1-3/4" x 0.049

3. Maximun bending moment

Why so many differences in the diameters of the tubes?
Depends on several factors:

a) Method of calculation
b) Design criteria (maximum load)
c) Size of the structure and types of joints between tubes
d) Geometry of the tubes (outer diameter, thickness)
e) Alloy type and temper
f)  Commercial availability

This section will analyze the influencing of factors d) and e)

Hang gliding tubes are under efforts of tensile, compression, bending, torsion and shear. The most significant efforts are bending and compression. The compression is greatest in the cross bar, and having to avoid the phenomenon of lateral buckling. The lateral buckling is avoided, also, by bending resistant sections. Then, the most important feature of the tubes of a delta is its resistance to bending.


Below is analyzed by the classical theory of strength of materials, and the theory of elasticity, maximum stress and maximum bending moment in a tube of outer diameter "D" and inner diameter "d".


Maximun bending moment
Fig 1: Maximun bending moment in tubes

The conclusion is that the maximum moment resisted is:


Mmax= k x E x sigma_max

where:

k = geometrical factor defined by Laboratori d'envol as k = pi x (D4 -d4)/(32 x D)
E = modulus of elasticity of the material (aluminum alloys is 70 Mpa aprox)
sigma_max = maximum stress in the material, at the criteria of the designer, and probably less than the yield strenght (55 Mpa to 462 Mpa)

The geometric K-factor, is of the utmost importance, since it allows to compare the flexural capacity of tubes of various diameters and wall thicknesses.


The final choice of the tube is made by multiplying the factor k by the stress and modulus of elasticity of the alloy used. Previously, the maximal efforts in the estructure must have calculated (topic for another article).

Below, K-factor, calculated for tubes used in HG:


K-factor
Table 2: K-factor and geometric properties of HG tubing. Also, in openoffice format: k-factor.ods


4. Aluminum tubing sizes

Commercial tubing sizes: (non metric units: 1inch=25,4 mm 1 lbs=453,6g 1ft=30,48cm)

Ext diameter x wall (inch)
Int diameter (inch)
lbs per ft
lbs unit
ft unit
3/16 X 0.035
0.118
0.020
0.24
12
3/16 X 0.049
0.090
0.026
0.31
12
3/16 X 0.058
0.072
0.277
0.33
12
1/4 X 0.035
0.180
0.028
0.33
12
1/4 X 0.049
0.152
0.036
0.44
12
1/4 X 0.058
0.134
0.041
0.49
12
5/16 X 0.035
0.243
0.036
0.43
12
5/16 X 0.049
0.215
0.047
0.57
12
5/16 X 0.058
0.197
0.054
0.65
12
3/8 X 0.035
0.305
0.044
0.53
12
3/8 X 0.049
0.277
0.059
0.71
12
3/8 X 0.058
0.259
0.068
0.82
12
3/8 X 0.065
0.245
0.074
0.89
12
7/16 X 0.035
0.368
0.052
0.62
12
7/16 X 0.049
0.340
0.070
0.84
12
7/16 X 0.065
0.308
0.089
1.07
12
1/2 X 0.028
0.444
0.049
0.59
12
1/2 X 0.035
0.430
0.060
0.72
12
1/2 X 0.049
0.402
0.082
0.98
12
1/2 X 0.058
0.384
0.095
1.14
12
1/2 X 0.065
0.370
0.104
1.25
12
1/2 X 0.083
0.334
0.128
1.54
12
5/8 X 0.035
0.555
0.076
0.91
12
5/8 X 0.049
0.527
0.104
1.25
12
5/8 X 0.058
0.509
0.121
1.45
12
5/8 X 0.065
0.495
0.134
1.61
12
3/4 X 0.035
0.680
0.092
1.10
12
3/4 X 0.049
0.652
0.127
1.52
12
3/4 X 0.058
0.634
0.148
1.78
12
3/4 X 0.065
0.620
0.164
1.97
12
3/4 X 0.083
0.584
0.205
2.46
12
3/4 X 0.125
0.500
0.289
3.47
12
7/8 X 0.035
0.805
0.109
1.31
12
7/8 X 0.049
0.777
0.150
1.80
12
7/8 X 0.058
0.759
0.175
2.10
12
7/8 X 0.065
0.745
0.199
2.33
12
7/8 X 0.083
0.709
0.243
2.92
12
1 X 0.035
0.930
0.125
1.50
12
1 X 0.049
0.902
0.172
2.06
12
1 X 0.058
0.884
0.202
2.42
12
1 X 0.065
0.870
0.225
2.70
12
1 X 0.083
0.834
0.281
3.37
12
1 X 0.125
0.750
0.404
4.85
24
1 X 0.188
0.625
0.564
13.54
24
1 X 0.250 
0.500
0.708
16.99
24
1-1/8 X 0.035
1.055
0.141
1.69
12
1-1/8 X 0.058
1.009
0.229
2.75
12
1-1/8 X 0.065
0.995
0.255
3.06
12
1-1/4 X 0.035
1.180
0.157
1.88
12
1-1/4 X 0.049
1.152
0.217
2.60
12
1-1/4 X 0.058
1.134
0.255
3.06
12
1-1/4 X 0.065
1.120
0.285
3.42
12
1-1/4 X 0.065  
1.120
0.285
3.42
12
1-1/4 X 0.083
1.084
0.358
4.30
12
1-1/4 X 0.125  
1.000
0.520
12.48
24
1-1/4 X 0.250  
0.750
0.924
22.20
24
1-3/8 X 0.035
1.305
0.173
2.08
12
1-3/8 X 0.049
1.277
0.240
2.88
12
1-3/8 X 0.058
1.259
0.282
3.38
12
1-1/2 X 0.035
1.430
0.189
2.27
12
1-1/2 X 0.049
1.402
0.263
3.16
12
1-1/2 X 0.058
1.384
0.309
3.71
12
1-1/2 X 0.065
1.370
0.345
4.14
12
1-1/2 X 0.065  
1.370
0.345
4.14
12
1-1/2 X 0.083
1.334
0.435
5.22
12
1-1/2 X 0.125
1.250
0.630
7.56
12
1-1/2 X 0.125  
1.250
0.630
15.12
24
1-1/2 X 0.188  
1.124
0.911
21.86
24
1-1/2 X 0.250  
1.000
1.150
27.60
24
1-1/2 X 0.375  
0.750
1.599
38.78
24
1-5/8 X 0.035
1.555
0.206
2.47
12
1-5/8 X 0.049
1.527
0.285
3.42
12
1-5/8 X 0.058
1.509
0.336
4.03
12
1-3/4 X 0.035
1.680
0.222
2.66
12
1-3/4 X 0.049
1.652
0.308
3.70
12
1-3/4 X 0.065
1.620
0.405
4.86
12
1-3/4 X 0.083
1.584
0.510
6.12
12
1-3/4 X 0.125  
1.500
0.750
9.00
24
1-3/4 X 0.250  
1.250
1.385
33.24
24
1-3/4 X 0.375  
1.000
1.905
45.72
24
1-7/8 X 0.058
1.759
0.389
4.67
12
2 X 0.035
1.930
0.254
3.05
12
2 X 0.049
1.902
0.353
4.24
12
2 X 0.058
1.884
0.416
4.99
12
2 X 0.065
1.870
0.465
5.58
12
2 X 0.065  
1.870
0.465
5.58
12
2 X 0.083
1.834
0.590
7.08
12
2 X 0.125
1.750
0.870
10.44
12
2 X 0.125  
1.750
0.870
20.88
24
2 X 0.188  
1.625
1.259
30.20
24
2 X 0.250  
1.500
1.620
38.88
24
2 X 0.375  
1.250
2.250
54.00
24
2 X 0.500  
1.000
2.804
68.22
24
2-1/4 X 0.049
2.152
0.398
4.78
12
2-1/4 X 0.065
2.120
0.520
6.24
12
2-1/4 X 0.065  
2.120
0.520
6.24
12
2-1/4 X 0.083
2.084
0.660
7.92
12
2-1/4 X 0.095  
2.060
0.756
9.07
12
2-1/4 X 0.125  
2.000
0.981
23.54
24
2-1/4 X 0.250  
1.750
1.850
44.40
24
2-1/4 X 0.375  
1.500
2.598
62.35
24
2-1/4 X 0.500  
1.250
3.233
77.59
24
2-3/8 X 0.250  
1.875
1.960
47.04
24
2-3/8 X 0.500  
1.375
3.463
83.11
24
2-1/2 X 0.049
2.402
0.444
5.33
12
2-1/2 X 0.065
2.370
0.580
6.96
12
2-1/2 X 0.065  
2.370
0.580
6.96
12
2-1/2 X 0.083
2.334
0.740
8.88
12
2-1/2 X 0.125  
2.250
1.100
26.40
24
2-1/2 X 0.250  
2.000
2.080
49.92
24
2-1/2 X 0.375  
1.750
2.940
70.56
24
2-1/2 X 0.500  
1.500
3.700
88.80
24
2-1/2 X 0.750  
1.000
4.860
116.64
24
2-3/4 X 0.125  
2.500
1.210
29.04
24
2-3/4 X 0.250  
2.250
2.310
55.44
24
2-3/4 X 0.500  
1.750
4.160
99.84
24
3 X 0.049
2.902
0.530
6.36
12
3 X 0.065
2.870
0.700
8.40
12
3 X 0.065  
2.870
0.701
8.42
12
3 X 0.083
2.834
0.890
10.68
12
3 X 0.125
2.750
1.330
15.96
12
3 X 0.125  
2.750
1.330
31.92
24
3 X 0.188  
2.625
1.953
46.87
24
3 X 0.250  
2.500
2.540
60.96
24
3 X 0.375  
2.250
3.640
87.36
24
3 X 0.500  
2.000
4.620
110.88
24
3 X 0.625  
1.750
5.480
131.52
24
3 X 0.750  
1.500
6.240
149.76
24
3 X 1.000  
1.000
7.389
177.34
24
Table 3: Tubing sizes

This article is part of the gnuSTAR study
home LE